3.104 \(\int x^3 (a+b \tan ^{-1}(c x^3)) \, dx\)

Optimal. Leaf size=174 \[ \frac {1}{4} x^4 \left (a+b \tan ^{-1}\left (c x^3\right )\right )-\frac {\sqrt {3} b \log \left (c^{2/3} x^2-\sqrt {3} \sqrt [3]{c} x+1\right )}{16 c^{4/3}}+\frac {\sqrt {3} b \log \left (c^{2/3} x^2+\sqrt {3} \sqrt [3]{c} x+1\right )}{16 c^{4/3}}+\frac {b \tan ^{-1}\left (\sqrt [3]{c} x\right )}{4 c^{4/3}}-\frac {b \tan ^{-1}\left (\sqrt {3}-2 \sqrt [3]{c} x\right )}{8 c^{4/3}}+\frac {b \tan ^{-1}\left (2 \sqrt [3]{c} x+\sqrt {3}\right )}{8 c^{4/3}}-\frac {3 b x}{4 c} \]

[Out]

-3/4*b*x/c+1/4*b*arctan(c^(1/3)*x)/c^(4/3)+1/4*x^4*(a+b*arctan(c*x^3))+1/8*b*arctan(2*c^(1/3)*x-3^(1/2))/c^(4/
3)+1/8*b*arctan(2*c^(1/3)*x+3^(1/2))/c^(4/3)-1/16*b*ln(1+c^(2/3)*x^2-c^(1/3)*x*3^(1/2))*3^(1/2)/c^(4/3)+1/16*b
*ln(1+c^(2/3)*x^2+c^(1/3)*x*3^(1/2))*3^(1/2)/c^(4/3)

________________________________________________________________________________________

Rubi [A]  time = 0.32, antiderivative size = 174, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 8, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.571, Rules used = {5033, 321, 209, 634, 618, 204, 628, 203} \[ \frac {1}{4} x^4 \left (a+b \tan ^{-1}\left (c x^3\right )\right )-\frac {\sqrt {3} b \log \left (c^{2/3} x^2-\sqrt {3} \sqrt [3]{c} x+1\right )}{16 c^{4/3}}+\frac {\sqrt {3} b \log \left (c^{2/3} x^2+\sqrt {3} \sqrt [3]{c} x+1\right )}{16 c^{4/3}}+\frac {b \tan ^{-1}\left (\sqrt [3]{c} x\right )}{4 c^{4/3}}-\frac {b \tan ^{-1}\left (\sqrt {3}-2 \sqrt [3]{c} x\right )}{8 c^{4/3}}+\frac {b \tan ^{-1}\left (2 \sqrt [3]{c} x+\sqrt {3}\right )}{8 c^{4/3}}-\frac {3 b x}{4 c} \]

Antiderivative was successfully verified.

[In]

Int[x^3*(a + b*ArcTan[c*x^3]),x]

[Out]

(-3*b*x)/(4*c) + (b*ArcTan[c^(1/3)*x])/(4*c^(4/3)) + (x^4*(a + b*ArcTan[c*x^3]))/4 - (b*ArcTan[Sqrt[3] - 2*c^(
1/3)*x])/(8*c^(4/3)) + (b*ArcTan[Sqrt[3] + 2*c^(1/3)*x])/(8*c^(4/3)) - (Sqrt[3]*b*Log[1 - Sqrt[3]*c^(1/3)*x +
c^(2/3)*x^2])/(16*c^(4/3)) + (Sqrt[3]*b*Log[1 + Sqrt[3]*c^(1/3)*x + c^(2/3)*x^2])/(16*c^(4/3))

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 209

Int[((a_) + (b_.)*(x_)^(n_))^(-1), x_Symbol] :> Module[{r = Numerator[Rt[a/b, n]], s = Denominator[Rt[a/b, n]]
, k, u, v}, Simp[u = Int[(r - s*Cos[((2*k - 1)*Pi)/n]*x)/(r^2 - 2*r*s*Cos[((2*k - 1)*Pi)/n]*x + s^2*x^2), x] +
 Int[(r + s*Cos[((2*k - 1)*Pi)/n]*x)/(r^2 + 2*r*s*Cos[((2*k - 1)*Pi)/n]*x + s^2*x^2), x]; (2*r^2*Int[1/(r^2 +
s^2*x^2), x])/(a*n) + Dist[(2*r)/(a*n), Sum[u, {k, 1, (n - 2)/4}], x], x]] /; FreeQ[{a, b}, x] && IGtQ[(n - 2)
/4, 0] && PosQ[a/b]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 5033

Int[((a_.) + ArcTan[(c_.)*(x_)^(n_)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcTan
[c*x^n]))/(d*(m + 1)), x] - Dist[(b*c*n)/(d*(m + 1)), Int[(x^(n - 1)*(d*x)^(m + 1))/(1 + c^2*x^(2*n)), x], x]
/; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1]

Rubi steps

\begin {align*} \int x^3 \left (a+b \tan ^{-1}\left (c x^3\right )\right ) \, dx &=\frac {1}{4} x^4 \left (a+b \tan ^{-1}\left (c x^3\right )\right )-\frac {1}{4} (3 b c) \int \frac {x^6}{1+c^2 x^6} \, dx\\ &=-\frac {3 b x}{4 c}+\frac {1}{4} x^4 \left (a+b \tan ^{-1}\left (c x^3\right )\right )+\frac {(3 b) \int \frac {1}{1+c^2 x^6} \, dx}{4 c}\\ &=-\frac {3 b x}{4 c}+\frac {1}{4} x^4 \left (a+b \tan ^{-1}\left (c x^3\right )\right )+\frac {b \int \frac {1}{1+c^{2/3} x^2} \, dx}{4 c}+\frac {b \int \frac {1-\frac {1}{2} \sqrt {3} \sqrt [3]{c} x}{1-\sqrt {3} \sqrt [3]{c} x+c^{2/3} x^2} \, dx}{4 c}+\frac {b \int \frac {1+\frac {1}{2} \sqrt {3} \sqrt [3]{c} x}{1+\sqrt {3} \sqrt [3]{c} x+c^{2/3} x^2} \, dx}{4 c}\\ &=-\frac {3 b x}{4 c}+\frac {b \tan ^{-1}\left (\sqrt [3]{c} x\right )}{4 c^{4/3}}+\frac {1}{4} x^4 \left (a+b \tan ^{-1}\left (c x^3\right )\right )-\frac {\left (\sqrt {3} b\right ) \int \frac {-\sqrt {3} \sqrt [3]{c}+2 c^{2/3} x}{1-\sqrt {3} \sqrt [3]{c} x+c^{2/3} x^2} \, dx}{16 c^{4/3}}+\frac {\left (\sqrt {3} b\right ) \int \frac {\sqrt {3} \sqrt [3]{c}+2 c^{2/3} x}{1+\sqrt {3} \sqrt [3]{c} x+c^{2/3} x^2} \, dx}{16 c^{4/3}}+\frac {b \int \frac {1}{1-\sqrt {3} \sqrt [3]{c} x+c^{2/3} x^2} \, dx}{16 c}+\frac {b \int \frac {1}{1+\sqrt {3} \sqrt [3]{c} x+c^{2/3} x^2} \, dx}{16 c}\\ &=-\frac {3 b x}{4 c}+\frac {b \tan ^{-1}\left (\sqrt [3]{c} x\right )}{4 c^{4/3}}+\frac {1}{4} x^4 \left (a+b \tan ^{-1}\left (c x^3\right )\right )-\frac {\sqrt {3} b \log \left (1-\sqrt {3} \sqrt [3]{c} x+c^{2/3} x^2\right )}{16 c^{4/3}}+\frac {\sqrt {3} b \log \left (1+\sqrt {3} \sqrt [3]{c} x+c^{2/3} x^2\right )}{16 c^{4/3}}+\frac {b \operatorname {Subst}\left (\int \frac {1}{-\frac {1}{3}-x^2} \, dx,x,1-\frac {2 \sqrt [3]{c} x}{\sqrt {3}}\right )}{8 \sqrt {3} c^{4/3}}-\frac {b \operatorname {Subst}\left (\int \frac {1}{-\frac {1}{3}-x^2} \, dx,x,1+\frac {2 \sqrt [3]{c} x}{\sqrt {3}}\right )}{8 \sqrt {3} c^{4/3}}\\ &=-\frac {3 b x}{4 c}+\frac {b \tan ^{-1}\left (\sqrt [3]{c} x\right )}{4 c^{4/3}}+\frac {1}{4} x^4 \left (a+b \tan ^{-1}\left (c x^3\right )\right )-\frac {b \tan ^{-1}\left (\sqrt {3}-2 \sqrt [3]{c} x\right )}{8 c^{4/3}}+\frac {b \tan ^{-1}\left (\sqrt {3}+2 \sqrt [3]{c} x\right )}{8 c^{4/3}}-\frac {\sqrt {3} b \log \left (1-\sqrt {3} \sqrt [3]{c} x+c^{2/3} x^2\right )}{16 c^{4/3}}+\frac {\sqrt {3} b \log \left (1+\sqrt {3} \sqrt [3]{c} x+c^{2/3} x^2\right )}{16 c^{4/3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 179, normalized size = 1.03 \[ \frac {a x^4}{4}-\frac {\sqrt {3} b \log \left (c^{2/3} x^2-\sqrt {3} \sqrt [3]{c} x+1\right )}{16 c^{4/3}}+\frac {\sqrt {3} b \log \left (c^{2/3} x^2+\sqrt {3} \sqrt [3]{c} x+1\right )}{16 c^{4/3}}+\frac {b \tan ^{-1}\left (\sqrt [3]{c} x\right )}{4 c^{4/3}}-\frac {b \tan ^{-1}\left (\sqrt {3}-2 \sqrt [3]{c} x\right )}{8 c^{4/3}}+\frac {b \tan ^{-1}\left (2 \sqrt [3]{c} x+\sqrt {3}\right )}{8 c^{4/3}}+\frac {1}{4} b x^4 \tan ^{-1}\left (c x^3\right )-\frac {3 b x}{4 c} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3*(a + b*ArcTan[c*x^3]),x]

[Out]

(-3*b*x)/(4*c) + (a*x^4)/4 + (b*ArcTan[c^(1/3)*x])/(4*c^(4/3)) + (b*x^4*ArcTan[c*x^3])/4 - (b*ArcTan[Sqrt[3] -
 2*c^(1/3)*x])/(8*c^(4/3)) + (b*ArcTan[Sqrt[3] + 2*c^(1/3)*x])/(8*c^(4/3)) - (Sqrt[3]*b*Log[1 - Sqrt[3]*c^(1/3
)*x + c^(2/3)*x^2])/(16*c^(4/3)) + (Sqrt[3]*b*Log[1 + Sqrt[3]*c^(1/3)*x + c^(2/3)*x^2])/(16*c^(4/3))

________________________________________________________________________________________

fricas [B]  time = 0.46, size = 399, normalized size = 2.29 \[ \frac {4 \, b c x^{4} \arctan \left (c x^{3}\right ) + 4 \, a c x^{4} + \sqrt {3} c \left (\frac {b^{6}}{c^{8}}\right )^{\frac {1}{6}} \log \left (b^{2} x^{2} + \sqrt {3} b c x \left (\frac {b^{6}}{c^{8}}\right )^{\frac {1}{6}} + c^{2} \left (\frac {b^{6}}{c^{8}}\right )^{\frac {1}{3}}\right ) - \sqrt {3} c \left (\frac {b^{6}}{c^{8}}\right )^{\frac {1}{6}} \log \left (b^{2} x^{2} - \sqrt {3} b c x \left (\frac {b^{6}}{c^{8}}\right )^{\frac {1}{6}} + c^{2} \left (\frac {b^{6}}{c^{8}}\right )^{\frac {1}{3}}\right ) - 4 \, c \left (\frac {b^{6}}{c^{8}}\right )^{\frac {1}{6}} \arctan \left (-\frac {2 \, b c^{7} x \left (\frac {b^{6}}{c^{8}}\right )^{\frac {5}{6}} - 2 \, \sqrt {b^{2} x^{2} + \sqrt {3} b c x \left (\frac {b^{6}}{c^{8}}\right )^{\frac {1}{6}} + c^{2} \left (\frac {b^{6}}{c^{8}}\right )^{\frac {1}{3}}} c^{7} \left (\frac {b^{6}}{c^{8}}\right )^{\frac {5}{6}} + \sqrt {3} b^{6}}{b^{6}}\right ) - 4 \, c \left (\frac {b^{6}}{c^{8}}\right )^{\frac {1}{6}} \arctan \left (-\frac {2 \, b c^{7} x \left (\frac {b^{6}}{c^{8}}\right )^{\frac {5}{6}} - 2 \, \sqrt {b^{2} x^{2} - \sqrt {3} b c x \left (\frac {b^{6}}{c^{8}}\right )^{\frac {1}{6}} + c^{2} \left (\frac {b^{6}}{c^{8}}\right )^{\frac {1}{3}}} c^{7} \left (\frac {b^{6}}{c^{8}}\right )^{\frac {5}{6}} - \sqrt {3} b^{6}}{b^{6}}\right ) - 8 \, c \left (\frac {b^{6}}{c^{8}}\right )^{\frac {1}{6}} \arctan \left (-\frac {b c^{7} x \left (\frac {b^{6}}{c^{8}}\right )^{\frac {5}{6}} - \sqrt {b^{2} x^{2} + c^{2} \left (\frac {b^{6}}{c^{8}}\right )^{\frac {1}{3}}} c^{7} \left (\frac {b^{6}}{c^{8}}\right )^{\frac {5}{6}}}{b^{6}}\right ) - 12 \, b x}{16 \, c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arctan(c*x^3)),x, algorithm="fricas")

[Out]

1/16*(4*b*c*x^4*arctan(c*x^3) + 4*a*c*x^4 + sqrt(3)*c*(b^6/c^8)^(1/6)*log(b^2*x^2 + sqrt(3)*b*c*x*(b^6/c^8)^(1
/6) + c^2*(b^6/c^8)^(1/3)) - sqrt(3)*c*(b^6/c^8)^(1/6)*log(b^2*x^2 - sqrt(3)*b*c*x*(b^6/c^8)^(1/6) + c^2*(b^6/
c^8)^(1/3)) - 4*c*(b^6/c^8)^(1/6)*arctan(-(2*b*c^7*x*(b^6/c^8)^(5/6) - 2*sqrt(b^2*x^2 + sqrt(3)*b*c*x*(b^6/c^8
)^(1/6) + c^2*(b^6/c^8)^(1/3))*c^7*(b^6/c^8)^(5/6) + sqrt(3)*b^6)/b^6) - 4*c*(b^6/c^8)^(1/6)*arctan(-(2*b*c^7*
x*(b^6/c^8)^(5/6) - 2*sqrt(b^2*x^2 - sqrt(3)*b*c*x*(b^6/c^8)^(1/6) + c^2*(b^6/c^8)^(1/3))*c^7*(b^6/c^8)^(5/6)
- sqrt(3)*b^6)/b^6) - 8*c*(b^6/c^8)^(1/6)*arctan(-(b*c^7*x*(b^6/c^8)^(5/6) - sqrt(b^2*x^2 + c^2*(b^6/c^8)^(1/3
))*c^7*(b^6/c^8)^(5/6))/b^6) - 12*b*x)/c

________________________________________________________________________________________

giac [A]  time = 3.78, size = 167, normalized size = 0.96 \[ \frac {1}{16} \, b c^{7} {\left (\frac {\sqrt {3} \log \left (x^{2} + \frac {\sqrt {3} x}{{\left | c \right |}^{\frac {1}{3}}} + \frac {1}{{\left | c \right |}^{\frac {2}{3}}}\right )}{c^{8} {\left | c \right |}^{\frac {1}{3}}} - \frac {\sqrt {3} \log \left (x^{2} - \frac {\sqrt {3} x}{{\left | c \right |}^{\frac {1}{3}}} + \frac {1}{{\left | c \right |}^{\frac {2}{3}}}\right )}{c^{8} {\left | c \right |}^{\frac {1}{3}}} + \frac {2 \, \arctan \left ({\left (2 \, x + \frac {\sqrt {3}}{{\left | c \right |}^{\frac {1}{3}}}\right )} {\left | c \right |}^{\frac {1}{3}}\right )}{c^{8} {\left | c \right |}^{\frac {1}{3}}} + \frac {2 \, \arctan \left ({\left (2 \, x - \frac {\sqrt {3}}{{\left | c \right |}^{\frac {1}{3}}}\right )} {\left | c \right |}^{\frac {1}{3}}\right )}{c^{8} {\left | c \right |}^{\frac {1}{3}}} + \frac {4 \, \arctan \left (x {\left | c \right |}^{\frac {1}{3}}\right )}{c^{8} {\left | c \right |}^{\frac {1}{3}}}\right )} + \frac {b c x^{4} \arctan \left (c x^{3}\right ) + a c x^{4} - 3 \, b x}{4 \, c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arctan(c*x^3)),x, algorithm="giac")

[Out]

1/16*b*c^7*(sqrt(3)*log(x^2 + sqrt(3)*x/abs(c)^(1/3) + 1/abs(c)^(2/3))/(c^8*abs(c)^(1/3)) - sqrt(3)*log(x^2 -
sqrt(3)*x/abs(c)^(1/3) + 1/abs(c)^(2/3))/(c^8*abs(c)^(1/3)) + 2*arctan((2*x + sqrt(3)/abs(c)^(1/3))*abs(c)^(1/
3))/(c^8*abs(c)^(1/3)) + 2*arctan((2*x - sqrt(3)/abs(c)^(1/3))*abs(c)^(1/3))/(c^8*abs(c)^(1/3)) + 4*arctan(x*a
bs(c)^(1/3))/(c^8*abs(c)^(1/3))) + 1/4*(b*c*x^4*arctan(c*x^3) + a*c*x^4 - 3*b*x)/c

________________________________________________________________________________________

maple [A]  time = 0.16, size = 165, normalized size = 0.95 \[ \frac {x^{4} a}{4}+\frac {b \,x^{4} \arctan \left (c \,x^{3}\right )}{4}-\frac {3 b x}{4 c}+\frac {b \left (\frac {1}{c^{2}}\right )^{\frac {1}{6}} \arctan \left (\frac {x}{\left (\frac {1}{c^{2}}\right )^{\frac {1}{6}}}\right )}{4 c}-\frac {b \sqrt {3}\, \left (\frac {1}{c^{2}}\right )^{\frac {1}{6}} \ln \left (x^{2}-\sqrt {3}\, \left (\frac {1}{c^{2}}\right )^{\frac {1}{6}} x +\left (\frac {1}{c^{2}}\right )^{\frac {1}{3}}\right )}{16 c}+\frac {b \left (\frac {1}{c^{2}}\right )^{\frac {1}{6}} \arctan \left (\frac {2 x}{\left (\frac {1}{c^{2}}\right )^{\frac {1}{6}}}-\sqrt {3}\right )}{8 c}+\frac {b \sqrt {3}\, \left (\frac {1}{c^{2}}\right )^{\frac {1}{6}} \ln \left (x^{2}+\sqrt {3}\, \left (\frac {1}{c^{2}}\right )^{\frac {1}{6}} x +\left (\frac {1}{c^{2}}\right )^{\frac {1}{3}}\right )}{16 c}+\frac {b \left (\frac {1}{c^{2}}\right )^{\frac {1}{6}} \arctan \left (\frac {2 x}{\left (\frac {1}{c^{2}}\right )^{\frac {1}{6}}}+\sqrt {3}\right )}{8 c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(a+b*arctan(c*x^3)),x)

[Out]

1/4*x^4*a+1/4*b*x^4*arctan(c*x^3)-3/4*b*x/c+1/4*b/c*(1/c^2)^(1/6)*arctan(x/(1/c^2)^(1/6))-1/16*b/c*3^(1/2)*(1/
c^2)^(1/6)*ln(x^2-3^(1/2)*(1/c^2)^(1/6)*x+(1/c^2)^(1/3))+1/8*b/c*(1/c^2)^(1/6)*arctan(2*x/(1/c^2)^(1/6)-3^(1/2
))+1/16*b/c*3^(1/2)*(1/c^2)^(1/6)*ln(x^2+3^(1/2)*(1/c^2)^(1/6)*x+(1/c^2)^(1/3))+1/8*b/c*(1/c^2)^(1/6)*arctan(2
*x/(1/c^2)^(1/6)+3^(1/2))

________________________________________________________________________________________

maxima [A]  time = 0.43, size = 148, normalized size = 0.85 \[ \frac {1}{4} \, a x^{4} + \frac {1}{16} \, {\left (4 \, x^{4} \arctan \left (c x^{3}\right ) + c {\left (\frac {\frac {\sqrt {3} \log \left (c^{\frac {2}{3}} x^{2} + \sqrt {3} c^{\frac {1}{3}} x + 1\right )}{c^{\frac {1}{3}}} - \frac {\sqrt {3} \log \left (c^{\frac {2}{3}} x^{2} - \sqrt {3} c^{\frac {1}{3}} x + 1\right )}{c^{\frac {1}{3}}} + \frac {4 \, \arctan \left (c^{\frac {1}{3}} x\right )}{c^{\frac {1}{3}}} + \frac {2 \, \arctan \left (\frac {2 \, c^{\frac {2}{3}} x + \sqrt {3} c^{\frac {1}{3}}}{c^{\frac {1}{3}}}\right )}{c^{\frac {1}{3}}} + \frac {2 \, \arctan \left (\frac {2 \, c^{\frac {2}{3}} x - \sqrt {3} c^{\frac {1}{3}}}{c^{\frac {1}{3}}}\right )}{c^{\frac {1}{3}}}}{c^{2}} - \frac {12 \, x}{c^{2}}\right )}\right )} b \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arctan(c*x^3)),x, algorithm="maxima")

[Out]

1/4*a*x^4 + 1/16*(4*x^4*arctan(c*x^3) + c*((sqrt(3)*log(c^(2/3)*x^2 + sqrt(3)*c^(1/3)*x + 1)/c^(1/3) - sqrt(3)
*log(c^(2/3)*x^2 - sqrt(3)*c^(1/3)*x + 1)/c^(1/3) + 4*arctan(c^(1/3)*x)/c^(1/3) + 2*arctan((2*c^(2/3)*x + sqrt
(3)*c^(1/3))/c^(1/3))/c^(1/3) + 2*arctan((2*c^(2/3)*x - sqrt(3)*c^(1/3))/c^(1/3))/c^(1/3))/c^2 - 12*x/c^2))*b

________________________________________________________________________________________

mupad [B]  time = 1.16, size = 114, normalized size = 0.66 \[ \frac {a\,x^4}{4}-\frac {b\,\left (\mathrm {atan}\left ({\left (-1\right )}^{2/3}\,c^{1/3}\,x\right )-\mathrm {atan}\left (\frac {c^{1/3}\,x\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{2}\right )+2\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{2/3}\,c^{1/3}\,x\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{2}\right )\right )}{8\,c^{4/3}}+\frac {b\,x^4\,\mathrm {atan}\left (c\,x^3\right )}{4}-\frac {3\,b\,x}{4\,c}-\frac {\sqrt {3}\,b\,\left (\mathrm {atan}\left (\frac {c^{1/3}\,x\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{2}\right )+\mathrm {atan}\left ({\left (-1\right )}^{2/3}\,c^{1/3}\,x\right )\right )\,1{}\mathrm {i}}{8\,c^{4/3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(a + b*atan(c*x^3)),x)

[Out]

(a*x^4)/4 - (b*(atan((-1)^(2/3)*c^(1/3)*x) - atan((c^(1/3)*x*(3^(1/2)*1i + 1))/2) + 2*atan(((-1)^(2/3)*c^(1/3)
*x*(3^(1/2)*1i + 1))/2)))/(8*c^(4/3)) + (b*x^4*atan(c*x^3))/4 - (3*b*x)/(4*c) - (3^(1/2)*b*(atan((c^(1/3)*x*(3
^(1/2)*1i + 1))/2) + atan((-1)^(2/3)*c^(1/3)*x))*1i)/(8*c^(4/3))

________________________________________________________________________________________

sympy [A]  time = 58.10, size = 311, normalized size = 1.79 \[ \begin {cases} \frac {a x^{4}}{4} + \frac {b x^{4} \operatorname {atan}{\left (c x^{3} \right )}}{4} - \frac {3 b x}{4 c} - \frac {3 \sqrt [6]{-1} b \sqrt [6]{\frac {1}{c^{2}}} \log {\left (4 x^{2} - 4 \sqrt [6]{-1} x \sqrt [6]{\frac {1}{c^{2}}} + 4 \sqrt [3]{-1} \sqrt [3]{\frac {1}{c^{2}}} \right )}}{16 c} + \frac {3 \sqrt [6]{-1} b \sqrt [6]{\frac {1}{c^{2}}} \log {\left (4 x^{2} + 4 \sqrt [6]{-1} x \sqrt [6]{\frac {1}{c^{2}}} + 4 \sqrt [3]{-1} \sqrt [3]{\frac {1}{c^{2}}} \right )}}{16 c} - \frac {\sqrt [6]{-1} \sqrt {3} b \sqrt [6]{\frac {1}{c^{2}}} \operatorname {atan}{\left (\frac {2 \left (-1\right )^{\frac {5}{6}} \sqrt {3} x}{3 \sqrt [6]{\frac {1}{c^{2}}}} - \frac {\sqrt {3}}{3} \right )}}{8 c} - \frac {\sqrt [6]{-1} \sqrt {3} b \sqrt [6]{\frac {1}{c^{2}}} \operatorname {atan}{\left (\frac {2 \left (-1\right )^{\frac {5}{6}} \sqrt {3} x}{3 \sqrt [6]{\frac {1}{c^{2}}}} + \frac {\sqrt {3}}{3} \right )}}{8 c} - \frac {\left (-1\right )^{\frac {2}{3}} b \operatorname {atan}{\left (c x^{3} \right )}}{4 c^{2} \sqrt [3]{\frac {1}{c^{2}}}} & \text {for}\: c \neq 0 \\\frac {a x^{4}}{4} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(a+b*atan(c*x**3)),x)

[Out]

Piecewise((a*x**4/4 + b*x**4*atan(c*x**3)/4 - 3*b*x/(4*c) - 3*(-1)**(1/6)*b*(c**(-2))**(1/6)*log(4*x**2 - 4*(-
1)**(1/6)*x*(c**(-2))**(1/6) + 4*(-1)**(1/3)*(c**(-2))**(1/3))/(16*c) + 3*(-1)**(1/6)*b*(c**(-2))**(1/6)*log(4
*x**2 + 4*(-1)**(1/6)*x*(c**(-2))**(1/6) + 4*(-1)**(1/3)*(c**(-2))**(1/3))/(16*c) - (-1)**(1/6)*sqrt(3)*b*(c**
(-2))**(1/6)*atan(2*(-1)**(5/6)*sqrt(3)*x/(3*(c**(-2))**(1/6)) - sqrt(3)/3)/(8*c) - (-1)**(1/6)*sqrt(3)*b*(c**
(-2))**(1/6)*atan(2*(-1)**(5/6)*sqrt(3)*x/(3*(c**(-2))**(1/6)) + sqrt(3)/3)/(8*c) - (-1)**(2/3)*b*atan(c*x**3)
/(4*c**2*(c**(-2))**(1/3)), Ne(c, 0)), (a*x**4/4, True))

________________________________________________________________________________________